Curriculum Vitae
Experience
CNRS RESEARCHER
2020 - present
Université Paris Saclay, CNRS, CentraleSupélec, laboratoire des signaux et systèmes (L2S).
Riemannian geometry and optimization for robust learning.
POSTDOCTORAL RESEARCHER
2018 - 2020
Supervision: Guillaume GINOLHAC.
Université Savoie Mont Blanc, LISTIC.
Robust estimation and performance bounds for structured covariance matrices.
VISITING MELBOURNE UNIVERSITY
August - September 2019
Supervision: Jonathan MANTON.
Riemannian optimization based on homotopy.
PhD
2015 - 2018
Supervision: Marco CONGEDO & Jérôme MALICK.
Université Grenoble Alpes, CNRS, Grenoble INP, Gipsa-lab.
Riemannian geometry and optimization for joint diagonalization: application to source separation of electroencephalography.
Publications
3 International Machine Learning Conferences
In ICML, ECML-PKDD
7 Journal Papers
In IEEE-TSP, Signal Processing, SIAM-SIMAX, IEEE-SPL
16 International Signal Processing Conferences
In ICASSP, EUSIPCO, etc.
7 French National Signal Processing Conferences
In GRETSI
See full list
Supervision
PhD Students
Thu Ha PHI
2022 - 2025
Co-supervised with Arnaud BRELOY and Alexandre HIPPERT-FERRER.
Graph learning for EEG signals classification.
Imen AYADI
2021 - 2024
Co-supervised with Frédéric PASCAL.
Robust geometric learning for electroencephalography.
Postdoctoral researchers
Nils LAURENT
2022 - 2023
In collaboration with Nicolas LE BIHAN and Salem SAID.
Barycenters on Stiefel and Grassmann manifolds.
Alexandre HIPPERT-FERRER
2021 - 2022
In collaboration with Frédéric PASCAL, Arnaud BRELOY and Ammar MIAN.
EEG classification with missing data. Robust graph learning.
Major Fundings
Principal Investigator
DATAIA-YARN - 240K€
2022 - 2025
Co-Principal Investigator: Sylvain Chevallier. In collaboration with Frédéric PASCAL & Alexandre GRAMFORT.
DATAIA institute, Université Paris-Saclay.
Automatic processing of messy brain data with robust methods and transfer learning.
Collaborator
ANR DELTA - 600K€
2025 - 2029
Principal Investigator: François VARRAY.
Agence nationale de la recherche (ANR PRC).
From deep learning to clinical tissue anisotropy: proof of concept infarct lesion characterisation with 3D ultrasound.
ANR MASSILIA - 235K€
2021 - 2025
Principal Investigator: Arnaud BRELOY.
Agence nationale de la recherche (ANR JCJC).
Matrices spectral structures in graph learning and its applications.
Publications
My Google Scholar might be more up-to-date.
International ML conferences
-
Bouchard, F., Mian, A., Tiomoko, M., Ginolhac, G., & Pascal, F. (2024). Random matrix theory improved Fréchet mean of symmetric positive definite matrices. In International Conference on Machine Learning (ICML).
-
Hippert-Ferrer, A., Bouchard, F., Mian, A., Vayer, T., & Breloy, A. (2023). Learning graphical factor models with Riemannian optimization. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD).
-
Tiomoko, M., Couillet, R., Bouchard, F., & Ginolhac, G. (2019). Random matrix improved covariance estimation for a large class of metrics. In International Conference on Machine Learning (ICML).
Journal papers
-
Mian, A., Ginolhac, G., Bouchard, F., & Breloy, A. (2024). Online change detection in SAR time-series with Kronecker product structured scaled Gaussian models. Signal Processing.
-
Collas, A., Bouchard, F., Breloy, A., Ginolhac, G., Ren, C., & Ovarlez, J. P. (2021). Probabilistic PCA from heteroscedastic signals: geometric framework and application to clustering. IEEE Transactions on Signal Processing (TSP).
-
Bouchard, F., Breloy, A., Ginolhac, G., Renaux, A., & Pascal, F. (2021). A Riemannian framework for low-rank structured elliptical models. IEEE Transactions on Signal Processing (TSP).
-
Bouchard, F., Mian, A., Zhou, J., Said, S., Ginolhac, G., & Berthoumieu, Y. (2020). Riemannian geometry for compound Gaussian distributions: Application to recursive change detection. Signal Processing.
-
Bouchard, F., Afsari, B., Malick, J., & Congedo, M. (2020). Approximate joint diagonalization with Riemannian optimization on the general linear group. SIAM Journal on Matrix Analysis and Applications (SIMAX).
-
Breloy, A., Ginolhac, G., Renaux, A., & Bouchard, F. (2018). Intrinsic Cramér–Rao bounds for scatter and shape matrices estimation in CES distributions. IEEE Signal Processing Letters (SPL).
-
Bouchard, F., Malick, J., & Congedo, M. (2018). Riemannian optimization and approximate joint diagonalization for blind source separation. IEEE Transactions on Signal Processing (TSP).
Book Chapters
-
Bouchard, F., Breloy, A., Collas, A., Renaux, A., & Ginolhac, G. (2024). The Fisher-Rao geometry of CES distributions. Springer. Elliptical Distributions in Signal Processing.
International SP conferences
-
Phi, T. H., Hippert-Ferrer, A., Bouchard, F., & Breloy, A. (2024). Robust low-rank correlation fitting. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
-
Ayadi, I., Bouchard, F., & Pascal, F. (2023). t-WDA: A novel discriminant analysis applied to EEG classification. In European Signal Processing Conference (EUSIPCO).
-
Ayadi, I., Bouchard, F., & Pascal, F. (2023). Elliptical Wishart distribution: maximum likelihood estimator from information geometry. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
-
Hippert-Ferrer, A., Mian, A., Bouchard, F., & Pascal, F. (2022). Riemannian classification of EEG signals with missing values. In European Signal Processing Conference (EUSIPCO).
-
Collas, A., Bouchard, F., Ginolhac, G., Breloy, A., Ren, C., & Ovarlez, J. P. (2022). On the use of geodesic triangles between Gaussian distributions for classification problems. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
-
Bouchard, F., Breloy, A., Mian, A., & Ginolhac, G. (2021). On-line Kronecker product structured covariance estimation with Riemannian geometry for t-distributed data. In European Signal Processing Conference (EUSIPCO).
-
Collas, A., Bouchard, F., Breloy, A., Ren, C., Ginolhac, G., & Ovarlez, J. P. (2021). A Tyler-type estimator of location and scatter leveraging Riemannian optimization. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
-
Bouchard, F., Breloy, A., Ginolhac, G., & Renaux, A. (2021). A Riemannian approach to blind separation of t-distributed sources. In European Signal Processing Conference (EUSIPCO).
-
Lefèvre, J., Bouchard, F., Said, S., Le Bihan, N., & Manton, J. H. (2021). On Riemannian and non-Riemannian Optimisation, and Optimisation Geometry. International Symposium on Mathematical Theory of Networks and Systems (MTNS).
-
Bouchard, F., Breloy, A., Ginolhac, G., & Pascal, F. (2020). Riemannian framework for robust covariance matrix estimation in spiked models. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
-
Bouchard, F., Breloy, A., Renaux, A., & Ginolhac, G. (2020). Riemannian geometry and Cramér-Rao bound for blind separation of Gaussian sources. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
-
Rodrigues, P. L. C., Bouchard, F., Congedo, M., & Jutten, C. (2017). Dimensionality Reduction for BCI classification using Riemannian geometry. In International Brain-Computer Interface Conference.
-
Congedo, M., Rodrigues, P. L. C., Bouchard, F., Barachant, A., & Jutten, C. (2017). A closed-form unsupervised geometry-aware dimensionality reduction method in the Riemannian Manifold of SPD matrices. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
-
Bouchard, F., Malick, J., & Congedo, M. (2017). Approximate joint diagonalization according to the natural Riemannian distance. In International Conference of Latent Variable Analysis and Signal Separation (LVA/ICA).
-
Bouchard, F., Korczowski, L., Malick, J., & Congedo, M. (2016). Approximate joint diagonalization within the Riemannian geometry framework. In European Signal Processing Conference (EUSIPCO).
-
Korczowski, L., Bouchard, F., Jutten, C., & Congedo, M. (2016). Mining the bilinear structure of data with approximate joint diagonalization. In European Signal Processing Conference (EUSIPCO).
French national SP conferences
-
Hippert-Ferrer, A., Bouchard, F., Mian, A., Vayer, T., & Breloy, A. (2023). Optimisation Riemannienne pour l'apprentissage de graphes structurés. In Colloque Francophone de Traitement du Signal et des Images (GRETSI).
-
Laurent, N., Bouchard, F., Said, S., & Le Bihan, N. (2023). Estimation de barycentres sur variétés de Stiefel: une approche par projection. In Colloque Francophone de Traitement du Signal et des Images (GRETSI).
-
Ayadi, I., Bouchard, F., & Pascal, F. (2023). Distribution matricielle t-Wishart: géométrie d'information, estimation et application pour la classification de signaux EEG. In Colloque Francophone de Traitement du Signal et des Images (GRETSI).
-
Bouchard, F., Breloy, A., Renaux, A., & Ginolhac, G. (2019). Bornes de Cramér-Rao Intrinsèques pour l'estimation de la matrice de dispersion normalisée dans les distributions elliptiques. In Colloque Francophone de Traitement du Signal et des Images (GRETSI).
-
Rodrigues, P. L. C., Bouchard, F., Congedo, M., & Jutten, C. (2017). Géométrie Riemannienne appliquée à la réduction de la dimension de signaux EEG pour les interfaces cerveau-machine. In Colloque Francophone de Traitement du Signal et des Images (GRETSI).
-
Bouchard, F., Rodrigues, P. L. C., Malick, J., & Congedo, M. (2017). Réduction de dimension pour la Séparation Aveugle de Sources. In Colloque Francophone de Traitement du Signal et des Images (GRETSI).
-
Breloy, A., Renaux, A., Ginolhac, G., & Bouchard, F. (2017). Borne de Cramér-Rao intrinsèque pour la matrice de covariance des distributions elliptiques complexes. In Colloque Francophone de Traitement du Signal et des Images (GRETSI).
Contact
I am always open for collaborations on machine learning, statistical signal processing, Riemannian geometry and optimization.
florent.bouchard@cnrs.fr
florent.bouchard@centralesupelec.fr
CentraleSupélec, 3 rue Joliot Curie, 91190 Gif-sur-Yvette.
Elements
Text
This is bold and this is strong. This is italic and this is emphasized.
This is superscript text and this is subscript text.
This is underlined and this is code: for (;;) { ... }
. Finally, this is a link.
Heading Level 2
Heading Level 3
Heading Level 4
Heading Level 5
Heading Level 6
Blockquote
Fringilla nisl. Donec accumsan interdum nisi, quis tincidunt felis sagittis eget tempus euismod. Vestibulum ante ipsum primis in faucibus vestibulum. Blandit adipiscing eu felis iaculis volutpat ac adipiscing accumsan faucibus. Vestibulum ante ipsum primis in faucibus lorem ipsum dolor sit amet nullam adipiscing eu felis.
Preformatted
i = 0;
while (!deck.isInOrder()) {
print 'Iteration ' + i;
deck.shuffle();
i++;
}
print 'It took ' + i + ' iterations to sort the deck.';
Lists
Unordered
- Dolor pulvinar etiam.
- Sagittis adipiscing.
- Felis enim feugiat.
Alternate
- Dolor pulvinar etiam.
- Sagittis adipiscing.
- Felis enim feugiat.
Ordered
- Dolor pulvinar etiam.
- Etiam vel felis viverra.
- Felis enim feugiat.
- Dolor pulvinar etiam.
- Etiam vel felis lorem.
- Felis enim et feugiat.
Icons
Actions
Table
Default
Name |
Description |
Price |
Item One |
Ante turpis integer aliquet porttitor. |
29.99 |
Item Two |
Vis ac commodo adipiscing arcu aliquet. |
19.99 |
Item Three |
Morbi faucibus arcu accumsan lorem. |
29.99 |
Item Four |
Vitae integer tempus condimentum. |
19.99 |
Item Five |
Ante turpis integer aliquet porttitor. |
29.99 |
|
100.00 |
Alternate
Name |
Description |
Price |
Item One |
Ante turpis integer aliquet porttitor. |
29.99 |
Item Two |
Vis ac commodo adipiscing arcu aliquet. |
19.99 |
Item Three |
Morbi faucibus arcu accumsan lorem. |
29.99 |
Item Four |
Vitae integer tempus condimentum. |
19.99 |
Item Five |
Ante turpis integer aliquet porttitor. |
29.99 |
|
100.00 |